Multiscale analysis for the prediction of the full field in electromagnetoelastic composites with semi-infinite cracks

Author:

Aboudi Jacob1

Affiliation:

1. School of Mechanical Engineering, Tel Aviv University, Israel

Abstract

The full field distributions in loaded electromagnetoelastic composites with semi-infinite cracks and other localized defects are predicted by employing micro-to-macroscale analyses. At the micro level, the effective properties of the electromagnetoelastic composite, which consists of piezoelectric and piezomagnetic constituents, are determined by employing a micromechanical analysis which takes into account the detailed interaction between the phases. The subsequent macroscale analysis employs the jumps of the K-field of a crack embedded within a homogeneous electromagnetoelastic medium, computed at the boundaries of a rectangular domain that is sufficiently far away from the localized effects. Then, the double finite Fourier transform is applied and the solution of the problem in the transform domain is derived. Inversion of the Fourier transform provides, in conjunction with an iterative procedure, the resulting electromagnetoelastic field distributions. Both crack fronts perpendicular and parallel to the poling (the axis of symmetry of the composite) are considered. After the verification of the offered approach, results are presented for piezoelectric/piezomagnetic composites with a semi-infinite crack which is interacting with a cavity. In addition, the field distributions in cracked porous electromagnetoelastic materials are presented. A particular emphasis is given to the induced magnetic field caused by the application of electromechanical loading, and to the induced electric field caused by the application of magnetomechanical loading.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3