Performance-based seismic loss assessment of isolated simply-supported highway bridges retrofitted with different shape memory alloy cable restrainers in a life-cycle context

Author:

Li Shuai12ORCID,Hedayati Dezfuli Farshad3,Wang Jingquan1,Alam M Shahria2ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China

2. School of Engineering, University of British Columbia, Kelowna, BC, Canada

3. Parsons Inc., Burnaby, BC, Canada

Abstract

Shape memory alloy cables have emerged as an alternative to conventional steel cable restrainers for preventing the bridge spans from unseating during an extreme earthquake. Feasibility of high-cost NiTi shape memory alloy restrainers in retrofitting the bridges has been numerically investigated, and promising results have been published; however, considering the economic impacts, the effect of different types of shape memory alloy such as Cu-based and Fe-based shape memory alloy restrainers has not been discussed yet. The objective of this study is to address this problem in detail in order to propose the most cost-effective shape memory alloy restrainer suitable for bridge engineering applications. Seismic fragility and life-cycle loss (both direct and indirect) assessments are analytically performed on an isolated simply-supported highway bridge retrofitted by four types of shape memory alloy restrainers (i.e. NiTi, FeNiCoAlTaB, CuAlMn, and FeMnAlNi). Results showed that for all retrofitted bridges performed in the range of design displacement, the effect of type of shape memory alloy is significant on the damage probability and long-term seismic loss of the bridges. All the bridges retrofitted with shape memory alloy restrainers have a very low probability of collapse (less than 7%). It is also found that the bridge retrofitted with Fe-based shape memory alloy restrainers (SMA-II and SMA-IV) performed better as compared to the other cases. Compared to the bridge without restrainers and with NiTi shape memory alloy restrainers, Fe-based shape memory alloy restrainers can reduce the long-term loss by about 87% and 11%, respectively, at the design earthquake event specified in CHBDC-2014. The probabilistic risk analysis of highway bridges retrofitted with shape memory alloy restrainers can aid in paving the way toward widespread application of such smart materials in structural applications.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

natural sciences and engineering research council of canada

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3