Performance tests and mathematical model considering magnetic saturation for magnetorheological damper

Author:

Xu Zhao-Dong1,Jia Da-Huan12,Zhang Xiang-Cheng1

Affiliation:

1. Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University, Nanjing, China

2. China Nuclear Power Engineering Co., Ltd, Zhengzhou Branch, Zhengzhou, China

Abstract

As a semiactive control device, magnetorheological dampers have been paid more attention due to their high controllability, fast response, and low power demand. One of the important characteristics for magnetorheological dampers is magnetic saturation, that is, the maximum damping force will reach some value and no longer vary with the increasing input current, especially in the presence of large magnetic flux density. In order to take this problem into account fully, tests on a shear-valve mode magnetorheological damper are carried out to consider the effects of input current, displacement amplitude, and loading frequency on the properties of the magnetorheological damper during magnetic saturation situation first. Then, the magnetic saturation phenomenon of the magnetorheological damper is simulated using the finite element method, and the numerical simulation results are compared with the experimental results. Finally, a magnetic saturation mathematical model is proposed to describe the properties of the magnetorheological damper, and the numerical hysteresis curves of the proposed magnetic saturation mathematical model, the Bingham model, and the Bouc–Wen model are compared with the experimental results. It can be concluded that the magnetic saturation mathematical model can describe the influence of input current, displacement amplitude, and excitation frequency on the properties and the magnetic saturation property of the magnetorheological damper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference18 articles.

1. A Low Force Magneto-rheological (MR) Fluid Damper: Design, Fabrication and Characterization

2. Modeling and application of MR dampers in semi-adaptive structures

3. El-Aouar W (2002) Finite element analysis based modeling of magnetorheological dampers. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3