Affiliation:
1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
Abstract
This work presents the design, development, and characterization of unimorphtype laminated piezoelectric actuators. The actuators consist of a piezoelectric lead zirconate titanate (PZT) layer sandwiched between unidirectional Kevlar 49 and epoxy composite layers. Differential thermal expansion during processing places the ceramic plate in a state of residual compression and results in a curved actuator. Modified classical lamination theory (MCLT) (modified to include piezoelectricity) was used to design the actuators. Three layups were fabricated and characterized: [90/PZT/90/0], [902/PZT/90/02], and [903/PZT/90/03]. Results were compared to a commercially available unimorph-type actuator made from layers of metal, adhesive, and piezoelectric material. The classical lamination theory predictions were in good agreement with the measured response of the PZT composite actuators and provide a useful design tool for these actuators.
Subject
Mechanical Engineering,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献