Asymmetric bending response of shape memory alloy beam with functionally graded porosity

Author:

Fahimi Pouya1ORCID,Hajarian Amin2,Eskandari Amir Hossein3,Taheri Ali4,Baghani Mostafa1ORCID

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

3. Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, QC, Canada

4. Mechanical Engineering Department, University of Larestan, Lar, Iran

Abstract

In this study, an innovative semi-analytical model is presented to simulate the bending behavior of a shape memory alloy porous beam throughout loading and unloading cycles. The basis of the proposed method is the improved Brinson model which can capture the asymmetry behaviors of shape memory alloys in tension and compression. The comparison of the semi-analytical solution with two-dimensional finite element analysis results for both symmetric and asymmetric models of a homogeneous shape memory alloy beam is presented for model validation. Afterward, bending analysis of shape memory alloy beams with uniform porosity and functionally grading porosity is studied. For this purpose, first, the bending analysis of a shape memory alloy beam with uniform porosity is investigated to show the effects of porosity coefficient on the free tip deflection and slope. Then, the bending analysis of a shape memory alloy beam with functionally grading porosity is simulated. Reported findings with respect to symmetric and asymmetric models indicate that raising the porosity coefficient brings about an increase in deflection and slope. Also, it highlights the significant difference between the results of the asymmetric and symmetric models. The proposed semi-analytical solution can be utilized as an efficient tool for studying the effects of changing any of the porosity coefficient, the geometry, and material of shape memory alloy beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3