Switchable stiffness morphing aerostructures based on granular jamming

Author:

Brigido-González J David1ORCID,Burrow Steve G1,Woods Benjamin KS1

Affiliation:

1. Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, UK

Abstract

One of the persistent challenges facing the development of morphing aerostructures is the need to have material and structural solutions which provide a compromise between the competing design drivers of low actuation energy and high stiffness under external loads. This work proposes a solution to this challenge in the form of a novel switchable stiffness structural concept based on the principle of granular jamming. In this article, the concept of using granular jamming for controlling stiffness is first introduced. Four-point bending tests are used to obtain the flexural rigidity and bending stiffness of three different granular materials under different levels of applied vacuum loading. Nonlinear finite element analysis simulations using experimentally derived nonlinear material properties show good agreement with experiment. A specific application of this concept is then proposed based on the Fish Bone Active Camber morphing airfoil. A unit cell of this concept is built, tested and analysed, followed by the first prototype of a complete switchable stiffness Fish Bone Active Camber morphing airfoil, which is experimentally shown to be able to achieve an increase in stiffness of up to 300% due to granular jamming.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3