Development of an Automated Wireless Tension Force Estimation System for Cable-stayed Bridges

Author:

Cho Soojin1,Lynch Jerome P.2,Lee Jong-Jae3,Yun Chung-Bang4

Affiliation:

1. Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea,

2. Department of Civil and Environmental Engineering, University of Michigan, 2380 G. G. Brown Building Ann Arbor, MI 48109-2125, USA

3. Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu Seoul, 143-747, South Korea

4. Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea

Abstract

Cable-supported bridges rely on the use of steel cables to support the bridge deck and load on it. Cable tension forces are monitored during construction to assist the alignment of cables and to ensure no cables are overloaded. Given that the cables are critical load carrying elements, it is prudent to routinely monitor the levels of cable tensions during operation. With current measurement methods being costly and labor-intensive, this article proposes an automated and low-cost wireless sensor system for continuous monitoring of the cable tension based on the vibration signature of the cable. A vibration-based tension force estimation method using a peak picking algorithm is explored by embedding it in the computational core of a wireless sensor. Welch’s method to average Fourier spectra from the segments of a long time history signal is employed to remove the non-stationarity of a short-duration acceleration record, which is a limit of the memory-constrained wireless sensor. A series of laboratory tests are conducted on a slender braided steel cable with a variety of cable sags and tension forces. Excellent agreements have been found between the actual tensions and those estimated by the present wireless system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3