Affiliation:
1. Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
Abstract
The proposed article describes the development of a new beam finite element for the coupled thermomechanical analysis of shape memory alloy actuators. The element is formulated, assuming coupled equilibrium equations for the thermoelastic stresses and thermal loads. Displacements and temperature are treated as internal degrees of freedom giving the ability to predict the coupled thermal–displacement response of a shape memory alloy beam. The constitutive shape memory alloy model of Lagoudas and coworkers is implemented in the formulation. A generalized beam theory is formulated assuming shear deformation with a cubic temperature field through the thickness. The new element is capable to simulate heat transfer phenomena, electric Joule heating as direct input, and heat convection effects. The coupling between mechanical and thermal equilibrium equations due to endothermic/exothermic martensitic transformation procedures is also included. Numerical results and evaluations of the developed beam element are presented for the thermomechanical response of shape memory alloy wire actuators and an adaptive strip subject to various types of applied thermal loading and heat convection conditions. The effect of coupling terms on the prediction of shape memory alloy actuator response is also evaluated.
Subject
Mechanical Engineering,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献