Design and experimental study of the porous foam metal magnetorheological fluid damper based on built-in multi-pole magnetic core

Author:

Zhao Dan1ORCID,Zhao Jianbin2,Zhao Zhenghang3,Liu Yang2,Liu Shaogang1ORCID,Wang Shuaihu1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China

2. Shanghai Marine Equipment Research Institute, CSIC, Shanghai, China

3. School of Mechanical Engineering, Heilongjiang University of Science and Technology, Harbin, China

Abstract

The porous foam metal magnetorheological fluid damper has a broad application prospect in the field of vibration isolation of precision instruments with small damping force because it does not need complex dynamic seal structure. The traditional single-ring magnetic pole porous foam metal magnetorheological fluid damper has a small effective area for the magnetic core that affects the damper output range due to the geometric constraints of the coil and the low magnetic field utilization. Therefore, in order to increase the effective area ratio of the magnetic core, this article introduces the built-in multi-pole magnetic core into the porous metal magnetorheological fluid damper and integrates four axial wound fan-shaped magnetic poles on the magnetic core to improve the output performance of the damper. The magnetic circuit is analyzed based on Ohm’s law of magnetic circuit, and the mathematical model of damping force is established. Based on this, the important geometric parameters of the damper are determined. The finite element method is used to simulate the magnetic field of the damper, and the output performance of the damper is numerically simulated. The dynamic performance test system of the damper is set up to test the designed damper, and the test data and numerical simulation results are verified with each other. The results show that the damping force peak and dynamic regulation range of the damper designed in this article are higher than those of the traditional porous foam metal magnetorheological fluid damper with magnetic core, which effectively improves the mechanical properties of the magnetorheological fluid damper with porous foam metal.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3