Affiliation:
1. Department of Civil Engineering, The University of New Mexico, Albuquerque, NM, USA
Abstract
Displacements of railroad bridges under service loads are important parameters in assessing bridge conditions and risk of train derailment, according to railroad bridge managers. Measuring bridge responses in the field is often expensive and challenging due to the high costs of sensing equipment. Consequently, railroad bridge managers typically rent or subcontract field measurements to others or choose not to collect dynamic data in the field and make visual inspections. This article studies the use of a low-cost data acquisition platform to measure reference-free dynamic displacements of railroad bridges by combining low-cost microcontrollers and accelerometers. Researchers used off-the-shelf systems to measure accelerations and reconstructed reference-free displacements from several railroad bridge crossing events by running trains with different levels of serviceability in the laboratory. The results obtained from the proposed low-cost sensors were compared with those of commercial sensing equipment. The results show that low-cost sensors and commercial sensing systems have comparable accuracy. The results of this study show that the proposed platform estimates reference-free displacements with a peak error between 20% and 30% and a root mean square error between 10% and 20%, which is similar to commercial structural health monitoring systems. The proposed low-cost system is approximately 300 times less expensive than the commercial sensing equipment. The ultimate goal of this research is to increase the intelligent assessment of bridges by training owners and inspectors to collect dynamic data of their interest with their own resources.
Subject
Mechanical Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献