An enhanced performance of a horizontal diamagnetic levitation mechanism–based vibration energy harvester for low frequency applications

Author:

Palagummi Sri Vikram1,Yuan Fuh-Gwo12

Affiliation:

1. Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China

Abstract

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation mechanism–based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit. The horizontal diamagnetic levitation mechanism comprises three permanent magnets and two diamagnetic plates. Two of the magnets, lifting magnets, are placed co-axially at a distance such that each attracts a centrally located magnet, floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet, and the diamagnetic plate is parametrically studied to quantify their effects on the size, stability of the levitation mechanism, and the resonant frequency of the floating magnet. For vibration energy harvesting using the horizontal diamagnetic levitation mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a volume figure of merit of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at a frequency of 1.9 Hz.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3