Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN–PT Single-crystal Fibers

Author:

Wilkie W. Keats1,Inman Daniel J.,Lloyd Justin M.2,High James W.3

Affiliation:

1. U. S. Army Research Laboratory, Vehicle Technology Directorate, NASA Langley Research Center, Hampton, VA 23681, USA

2. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

3. NASA Langley Research Center, Hampton, VA 23681, USA

Abstract

The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN–32%PT single-crystal fibers is presented. The device consists of a layer of rectangular single-crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic freestrain measurements of the single-crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single-crystal actuator at low bipolar electric fields (±250 V/mm) is ≈400% greater than that of the baseline PZT-5A piezoceramic device, and ≈200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0–4 kV/mm) is 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field free-strain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single-crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rule-of-mixture calculations of the effective elastic properties of the single-crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain, and deflection applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3