An Embedded Fiber Optic Sensor Method for Determining Residual Stresses in Fiber-Reinforced Composite Materials

Author:

Lawrence Craig M.,Nelson Drew V.1,Bennett Thomas E.,Spingarn Jay R.2

Affiliation:

1. Mechanical Engineering Department, Stanford University, Stanford, CA 94305-4021

2. Sandia National Laboratories, Livermore, CA 94551

Abstract

A method to determine process-induced residual stress in fiber-reinforced composite materials using strain measurements from embedded fiber optic sensors is presented. This method allows non-destructive, real-time determination of residual macrostress in these materials and may be useful for both process monitoring and control. Extrinsic Fabry-Perot interferometer strain sensors were embedded in Hercules AS4/3501-6 graphite/epoxy composite specimens prior to cure. The specimens were cured in a press, and the internal strains and temperatures developed during processing were monitored and recorded. Residual macrostresses were computed from these measurements using a viscoelastic model of the material. The results compare favorably with analytical predictions, previous experimental measurements from a destructive technique, and with measurements of warpage of a non-symmetric laminate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3