Network of selectively compliant actuators based on shape memory alloys and polymers for a reconfigurable sandwich panel

Author:

Testoni Oleg1ORCID,Bodkhe Sampada1,Bergamini Andrea2,Ermanni Paolo1

Affiliation:

1. ETH Zurich D-MAVT, Zurich, Switzerland

2. Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland

Abstract

Shape memory alloys (SMA) allow for the realization of smart actuators capable of achieving large stresses and large strains but highly demanding in terms of power input. This work presents a solution integrating shape memory polymers (SMP) in a novel type of selectively compliant actuator to reduce the power input of SMAs. The thermally induced variation in stiffness of the SMP is used to achieve large deformations by temporarily increasing the compliance of the actuator and to lock the actuator in a deformed state by restoring the initial stiffness. The behavior of the actuator is simulated taking into account the viscoelastic behavior of the SMP and validated through a comparison with experimental results. The latter show that the proposed actuator can achieve a maximum contraction of 3.0% and hold a contraction of about 1.6% multiple times without constantly powering the SMA. Finally, a reconfigurable sandwich panel is considered as possible application. A distributed actuator network is implemented in the face sheets of the panel and a digital image correlation system is used to prove the capability of the proposed structure of undergoing large deformations, holding a deformed shape without consuming energy, and recovering its initial shape. A further development of this panel might find application as support structure for morphing aerodynamic surfaces or reconfigurable antennas.

Funder

ETH board

The Digital Image Correlation (DIC) equipment was purchased through the Swiss National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3