Three-dimensional design of a large-displacement morphing wing droop nose device

Author:

Vasista Srinivas1ORCID,Nolte Felix2,Monner Hans Peter1,Horst Peter2,Burnazzi Marco3

Affiliation:

1. Institute of Composite Structures and Adaptive Systems, German Aerospace Center (DLR), Braunschweig, Germany

2. Institute of Aircraft Design and Lightweight Structures, Technische Universität Braunschweig, Braunschweig, Germany

3. Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Göttingen, Germany

Abstract

The numerical three-dimensional structural design of a large-displacement flexible morphing wing leading edge, otherwise known as a droop nose, is presented in this article. The droop nose is an essential component of a novel internally blown high-lift system for a transport aircraft to delay stall and reduce internal compressor requirements. A design chain consisting of optimization procedures was used to arrive at the structural design of the droop nose composed of a composite fiberglass skin with integral stringers and supporting kinematic mechanisms. The optimization tools aim to produce a design with minimal error to the critical target shapes. A maximum final error of 10.09 mm between calculated and target trajectories of the stringers was found after the kinematic optimization stage. After inputting the kinematic optimization results into the skin optimization stage and solving, a maximum error in the order of 13 mm and curvature difference 0.0028 1/mm were calculated, occurring in the outboard region. Prior two-dimensional analyses with similar shape deviations showed 0.4% lift reduction though further three-dimensional investigations are required. Concepts for integrating industrial requirements abrasion and lightning strike protection and in-flight de-icing into a multifunctional skin show promise and the resulting aerodynamic surface quality was found to be adequate.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3