Flexible Matrix Composite Skins for One-dimensional Wing Morphing

Author:

Murray Gabriel1,Gandhi Farhan2,Bakis Charles3

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA,

2. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA

3. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

Morphing aircraft wings require flexible skins that undergo large strains, have low in-plane stiffness, and high out-of-plane stiffness to carry aerodynamic loads. For some morphing applications deformation and low stiffness in the flexskin is required in one direction. In these cases, a flexible matrix composite (FMC) skin is proposed as a possible solution. A FMC comprises of stiff fibers embedded in a soft, high-strain capable matrix material. The matrix-dominated direction is aligned with the morphing direction. This allows the skin to undergo large strain at low energy cost. However, the high-stiffness in the fiber-dominated direction allows application of pretension along this direction, without rupture, and is critical for the membrane skin to carry out-of-plane pressure loads without excessive deformation. An analysis for a FMC skin panel is developed and validated against experiment. The analysis is used to conduct design studies. Comparison of the FMC skin to a matrix-only skin illustrates the importance of the fiber’s stiffness in tolerating pretension and limiting out-of-plane deformation under load. The other dominant parameter that limits out-of-plane deformation is panel size, with smaller lengths in the non-morphing direction proving beneficial. In general, fiber and matrix modulus has limited effect on out-of-plane deformation of flexskin panels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3