Affiliation:
1. Department of Mechatronics Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
2. Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
3. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia
Abstract
Smart materials are kinds of designed materials whose properties are controllable with the application of external stimuli such as the magnetic field, electric field, stress, and heat. Smart materials whose rheological properties are controlled by externally applied magnetic field are known as magneto-rheological materials. Magneto-rheological materials actively used for engineering applications include fluids, foams, grease, elastomers, and plastomers. In the last two decades, magneto-rheological materials have gained great attention of researchers significantly because of their salient controllable properties and potential applications to various fields such as automotive industry, civil environment, and military sector. This article offers a recent progressive review on the magneto-rheological materials technology, especially focusing on numerous application devices and systems utilizing magneto-rheological materials. Conceivable limitations, challenges, and comparable advantages of applying these magneto-rheological materials in various sectors are analyzed critically, which provides a clear pathway to the researchers in selecting and utilizing these materials. The review starts with an introduction to the elementary description of magneto-rheological materials and their significant contribution in various fields. Following this, different types of the magneto-rheological materials, modeling of the magneto-rheological materials, magneto-rheological material–based devices, and their applications have been extensively reviewed to promote practical use of magneto-rheological materials in a wide spectrum of the application from the automobile to medical device.
Subject
Mechanical Engineering,General Materials Science
Cited by
228 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献