Computational Material Characterization of Active Fiber Composite

Author:

Paik Seung Hoon,Yoon Tae Ho1,Shin Sang Joon2,Kim Seung Jo3

Affiliation:

1. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea

2. School of Mechanical and Aerospace Engineering, Flight Vehicle Research Center Seoul National University, Seoul, Korea

3. School of Mechanical and Aerospace Engineering, Flight Vehicle Research Center Seoul National University, Seoul, Korea;

Abstract

Active fiber composite (AFC) is composed of many different materials–piezoelectric fiber, polymer matrix, kapton mold, and kapton electrode and it is usually embedded in the glass fiber composites. In addition, there is an active/inactive region in the fiber. Therefore, it is ideal to adopt a full microscopic model and directly analyze the model without any simplifying assumptions. In this work, all the constituents of AFC are modeled and simulated directly in microscopic scale level. Material properties and actuation performances are characterized and compared with the previous experimental measurements. Some material constants which are difficult to be experimentally determined but needed for three-dimensional (3-D) finite element (FE) simulations can be obtained by this approach. Effects of mesh density are examined and local stresses are observed in detail. To solve a large scale problem, parallel computing technology is introduced.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3