Infrared–ultrasonic sensor fusion for support vector machine–based fall detection

Author:

Chen Zhangjie1,Wang Ya1ORCID

Affiliation:

1. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA

Abstract

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.

Funder

Advanced Research Projects Agency - Energy

Office of Naval Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3