Comparison of Piezoelectric, Magnetostrictive, and Electrostrictive Hybrid Hydraulic Actuators

Author:

John Shaju1,Sirohi Jayant1,Wang Gang2,Wereley Norman M.3

Affiliation:

1. Smart Structures Laboratory, Department of Aerospace Engineering University of Maryland, College Park, MD 20742, USA

2. Techno-Sciences Inc., 11750 Beltsville Drive 3rd floor, Beltsville, MD 20705, USA

3. Smart Structures Laboratory, Department of Aerospace Engineering University of Maryland, College Park, MD 20742, USA,

Abstract

In recent years, active material driven actuators have been widely researched for potential applications in the fields of aerospace, automotive, and civil engineering. While most of these active materials, such as piezoelectric, magnetostrictive, and electrostrictive materials, have high force and bandwidth capabilities, they are limited in stroke. In combination with hydraulic systems, the field-dependent motion of these materials can be amplified to produce high force, high stroke actuators. In a hybrid hydraulic pump, the motion of an active material is used to pressurize a hydraulic fluid. Since the properties of active materials vary greatly in terms of free strain and block force, there is a need to identify the optimum active material for a particular application. This study compares four active materials, Lead—Zirconate—Titanate (PZT), Lead—Magnesium—Niobate (PMN), Terfenol-D and Galfenol, as the drivers of a hybrid hydraulic actuation system. The performance of each of these active materials has been evaluated in the same hydraulic actuator through systematic testing of the actuator while maintaining the same length and volume for each active material. In each case, the active material has a length of around 54 mm and a cross-sectional area of 25 mm2. Commonly used metrics such as output power and electromechanical efficiency are used for comparison. Of the four materials tested in this study, PMN presented the largest free strain (2000 με), while Galfenol presented the least (300 με). The highest no-load velocity is also exhibited by the PMN-based actuator (270 mm/s). The maximum output power obtained is 2.5 W for both PMN and Terfenol-D-based actuators while the highest electromechanical efficiency obtained is 7% for the PMN-based actuator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3