Affiliation:
1. Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
Abstract
This article aims to study the propagation of polarized shear horizontal waves in viscous liquid layer resting over a porous piezoelectric half-space. An analytical solution is proposed using the separation of variables method. The dispersion relation is obtained using the proper boundary conditions for both electrically open and short cases in determinant form. The numerical example and graphical representation are provided in support of the findings. Dynamic response of affecting parameters (e.g. layer’s width, mass density, piezoelectric constant, dielectric constant, viscous coefficient, and dielectric coupling between the two phases of the porous aggregate) has been presented through graphs. It is observed that the phase velocity of considered wave remarkably affected by these parameters. Moreover, obtained result is matched with the existing result. Findings may contribute significantly toward optimization of surface acoustic wave devices and other liquid sensors. Moreover, this study may be utilized to frame a theoretical model for the problems of shear horizontal wave propagation in composite structures, involving piezoelectric medium.
Funder
Science and Engineering Research Board
Subject
Mechanical Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献