Seismic Performance Analysis of A Smart Base-isolation System Considering Dynamics of MR Elastomers

Author:

Jung Hyung-Jo1,Eem Seung-Hyun1,Jang Dong-Doo1,Koo Jeong-Hoi2

Affiliation:

1. Civil and Environmental Engineering Department, KAIST, Daejeon, South Korea

2. Mechanical and Manufacturing Engineering Department, Miami University, Oxford, Ohio, USA

Abstract

This article investigates a smart base-isolation system using magnetorheological (MR) elastomers, which are a new class of smart materials whose elastic modulus or stiffness can be adjusted depending on the magnitude of the applied magnetic field. The primary goals of this study are to develop a smart base-isolation model that represents the field-dependent dynamic behaviors of MR elastomers, to design and construct a scaled smart isolation system and a scaled building structure for a proof of concept study and to investigate the dynamic performance of the smart base-isolation in mitigating excessive vibrations of the scaled building structure under earthquake loadings. To this end, a dynamic model of an MR elastomer was first obtained based on characteristic test results of MR elastomers in shear mode. The dynamic model was then incorporated in a shear building model. Its effectiveness was validated by comparing the test results of a small-scale, single-story building structure coupled with the MR elastomer under harmonic excitations. After validating the MR elastomer-based base-isolation system, a further numerical study was performed to evaluate its effectiveness under seismic excitations. The results show that the proposed MR elastomer base-isolation system with the fuzzy logic control algorithm outperforms the conventional passive-type base isolation system in reducing the responses of the building structure for the seismic excitations considered in this study. The results further suggest that the feasibility of using MR elastomers as variable stiffness elements for enhancing the performance of conventional base-isolation systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3