Variable stiffness biological and bio-inspired materials

Author:

Saavedra Flores Erick I12,Friswell Michael I1,Xia Yuying1

Affiliation:

1. College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

2. Departamento de Ingeniería en Obras Civiles, Universidad de Santiago de Chile, Santiago, Chile

Abstract

This article reviews the main mechanisms of stiffness variation typically found in nature. The temporal changes in stiffness may be fully or partially reversible, or completely irreversible, and can be very slow or fast in time depending on the strategy adopted to alter the mechanical properties. It is also possible to observe changes in the stiffness in order to recover the original mechanical properties in damaged natural materials by means of self-healing mechanisms. In addition to stiffness variations in time, natural materials can also exhibit stiffness changes in space. These variations can be represented by alterations in the spatial distribution of the microscopic constituents across multiple hierarchical scales, from very small physical scales to large macroscopic dimensions. In order to optimise the strength and multifunctionality of these materials, spatial changes can also occur over larger areas at one single scale. In addition, several examples are provided to illustrate how natural materials have been exploited further in order to develop new bio-inspired materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3