A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement

Author:

Wang Guang-Qing1,Liao Wei-Hsin2

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China

2. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China

Abstract

Bistable oscillator has been recognized as an effective means by which to improve the linear resonant energy harvesting performance for its unique double-well restoring force potential. As oscillating in a high-energy orbit, the oscillator should be located at a distance from one stable to the other with a much higher velocity or acceleration. However, the vibration level in environment would be too low to provide the oscillator with a larger velocity to overcome the potential well barrier. This article is focused on the enhancement of a bistable piezoelectric oscillator with an elastic magnifier for high-energy orbit harvesting. The elastic magnifier positioned between the bistable piezoelectric oscillator and the base is to amplify the base vibration level in order to provide the bistable piezoelectric harvester with large movement. A 2-degree-of-freedom nonlinear lumped-parameter model of the bistable piezoelectric harvester with an elastic magnifier (bistable piezoelectric harvester + elastic magnifier) is derived to exhibit the large-amplitude periodic oscillation behaviors. With the comparison of the electromechanical responses obtained from theory and experiment, the results show that the output displacement, tip velocity, and harvesting voltage under open-circuit condition of the bistable piezoelectric harvester + elastic magnifier configuration are 15 mm, 1500 mm s−1, and 13 V, respectively, while those of the only bistable piezoelectric harvester configuration are 1 mm, 120 mm s−1, and 2 V under the excitation level of 8.69 m s−2 and frequency of 16 Hz. It is verified that the bistable piezoelectric harvester with an elastic magnifier can generate larger output performance than that of the bistable piezoelectric harvester without elastic magnifier at several excitation frequencies and levels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3