Gust load alleviation of an unmanned aerial vehicle wing using variable camber

Author:

Bernhammer Lars O12,Teeuwen Sjors PW1,De Breuker Roeland1,van der Veen Gijs J3,van Solingen Edwin3

Affiliation:

1. Aerospace Structures and Computational Mechanics, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

2. Wind Energy Research, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

3. Delft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

It is vital for an unmanned aerial vehicle to meet contradictory mission requirements originating from different tasks this type of aircraft has to fulfill. The ability to switch between configurations greatly expands the range of possible missions. An unmanned aerial vehicle wing has been developed to demonstrate the capacity to optimize the aerodynamic and structural performances according to the mission stage. The wing is equipped with four macro fiber composite benders that can be controlled individually, and each of these macro fiber composite benders actuates a section of the wing. A numerical study was conducted with XFLR5 to determine the optimal configurations of the flap positions for both range and endurance. A wind tunnel study was performed to verify these results. During the experiment, a maximum attainable increase in lift coefficient of 0.072 could be achieved, while numerically the increase was computed to be 0.079. The wide-frequency bandwidth of the actuators allows using the developed system also for other purposes such as load alleviation. Unmanned aerial vehicles are often light and fly at low airspeeds, which make them very sensitive to gust excitation. For this purpose, the experimental model was equipped with two accelerometers to measure the amplitude of the first two deformation modes. Significant load alleviation capacities with reductions up to 50% in load amplitude could be achieved. This reduction was achieved, even though the wing box contributes largely to the structural damping, as the foam for the construction absorbs a significant proportion of the vibrations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference20 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3