On the dynamic behavior of piezoelectric active repair by the boundary element method

Author:

Alaimo A.1,Milazzo A.2,Orlando C.2

Affiliation:

1. Faculty of Engineering and Architecture, University of Enna ‘Kore’, Cittadella Universitaria, Enna, Italy

2. Dipartimento di Ingegneria Civile Ambientale e Aerospaziale, University of Palermo, Palermo, Italy

Abstract

The dynamic behavior of piezoelectric active repair bonded on cracked structures is analyzed in this article. The boundary element code used to perform the simulations is implemented in the framework of piezoelectricity in order to model the coupling between the elastic and the electric fields, which represents the most important feature of piezoelectric media. The fracture mechanics problem, i.e. the crack, as well as the bonding layer between the host structure and the active patch is modeled by means of the multidomain technique provided with an interface spring model. More particularly, the spring interface model allows considering the bonding layer as a zero-thickness elastic ply characterized by normal and tangential stiffness constants. The crack is also modeled as an elastic interface characterized by vanishing stiffness. The dual reciprocity method (DRM) has been used in the present time-dependent application for the approximation of the domain inertia terms. Numerical analyses have been carried out in order to characterize the dynamic repairing mechanism of the assembled structure by means of the computation of the dynamic stress intensity factors and discussions are presented to highlight the effect of the inertial forces on the fracture mechanics behavior of the overall assembled structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3