Achieving biocompatible stiffness in NiTi through additive manufacturing

Author:

Taheri Andani Mohsen12,Haberland Christoph1,Walker Jason M13,Karamooz Mohammadreza4,Sadi Turabi Ali5,Saedi Soheil5,Rahmanian Rasool1,Karaca Haluk5,Dean David3,Kadkhodaei Mahmoud6,Elahinia Mohammad1

Affiliation:

1. Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH, USA

2. S.M. Wu Manufacturing Research Center, Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA

3. Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA

4. Department of Mechanical Engineering, Kerman Graduate University of Advanced Technology, Kerman, Iran

5. Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA

6. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

This article seeks to reduce the stiffness of NiTi parts from a nonporous state to that of human bone by introducing porosity. Compact bone stiffness is between 12 and 20 GPa while the currently used bone implant materials are several times stiffer. While very stiff implants and/or fixation hardware can temporarily immobilize healing bone, it also causes stress shielding of the surrounding bone and commonly results in stress concentrations at the implant or immobilization hardware’s fixation site(s). Together these processes can lead to implant or fixation hardware and/or the surrounding bone’s failure. Porous NiTi can be used to reduce the stiffness of metallic implants while also providing necessary stabilization or immobilization of the patient’s reconstructed anatomy. In this work, mechanical behavior of porous NiTi with different levels of porosity is simulated to show the relation between the stiffness and porosity level. Then porous structures are fabricated through additive manufacturing to validate the simulation results. The results indicate that stiffness can be reduced from the bulk value of 69 GPa to as low as 20.5 GPa for 58% porosity. The simulation shows that it is possible to achieve a wide range of desired stiffness by adjusting the level of porosity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3