Experimental Investigation on the Aerodynamic Characteristics of a Bio-mimetic Flapping Wing with Macro-fiber Composites

Author:

Kim Dae-Kwan1,Kim Hong-Il1,Han Jae-Hung2,Kwon Ki-Jung3

Affiliation:

1. Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology Daejeon, 305-701, Republic of Korea

2. Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology Daejeon, 305-701, Republic of Korea,

3. Department of Aerodynamics, Korea Aerospace Research Institute Daejeon, 305-333, Republic of Korea

Abstract

This study describes the development of a bio-mimetic flapping wing and the aerodynamic characteristics of a flexible flapping wing. First, the flapping wing is designed to produce flapping, twisting, and camber motions by using a bio-mimetic design approach. A structural model for a macro-fiber composite (MFC) actuator is established, and structural analysis of a smart flapping wing with the actuator is performed to determine the wing configuration for maximum camber motion. The analysis model is verified with the experimental data of the smart flapping wing. Second, aerodynamic tests are performed for the smart flapping wing in a subsonic wind tunnel, and the aerodynamic forces are measured for various test conditions. Additionally, the effects of camber and chordwise wing flexibility on unsteady and quasi-steady aerodynamic characteristics are discussed. The experimental results demonstrate that the effect of the camber generated by the MFC produces sufficient aerodynamic benefit. It is further found that chordwise wing flexibility is an important parameter in terms of affecting aerodynamic performance, and that lift produced in a quasi-steady flow condition is mostly affected by the forward speed and effective angle of attack.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3