Affiliation:
1. Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Abstract
This work is devoted to the free vibration nonlocal analysis of an elastic three-layered nanoplate with exponentially graded graphene sheet core and piezomagnetic face-sheets. The rectangular elastic three-layered nanoplate is resting on Pasternak’s foundation. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on first-order shear deformation theory. In addition, Eringen’s nonlocal piezo-magneto-elasticity theory is used to consider size effects. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually, the natural frequency is scrutinized for different side length ratio, nonlocal parameter, inhomogeneity parameter, and parameters of foundation numerically. The comparison with various references is performed for validation of our analytical results.
Subject
Mechanical Engineering,General Materials Science
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献