A monostable hybrid energy harvester for capturing energy from low-frequency excitations

Author:

Fan Kangqi1ORCID,Hao Jiayu1,Tan Qinxue1,Cai Meiling1

Affiliation:

1. School of Mechano-Electronic Engineering, Xidian University, Xi’an, China

Abstract

Efficient energy extraction from ubiquitous low-frequency excitations is still an open problem due to the high challenge in constructing an energy harvester with sufficiently low resonant frequency. To address this problem, this article reports a monostable hybrid energy harvester that consists of a piezoelectric power unit and an electromagnetic power unit. The proposed hybrid energy harvester can capture energy simultaneously from one excitation through the two power units. Theoretical models for the monostable hybrid energy harvester are established, and theoretical results fit well with the experimental measurements. Under a harmonic excitation with amplitude of 0.5 g ( g = 9.8 m/s2), the power output of the monostable hybrid energy harvester is experimentally measured to be 0.39 mW, which is obviously higher than that (piezoelectric unit: 0.25 mW; electromagnetic unit: 0.3 mW) produced by the individual power units when they work separately. More importantly, compared with the linear hybrid energy harvester, the monostable hybrid energy harvester has an operating frequency range that is shifted toward the lower frequency and achieves a slightly enhanced peak power, making the monostable hybrid energy harvester well suited for harnessing low-frequency excitations. In addition, employing two transduction mechanisms to synchronously and parallelly generate electricity from ambient excitations, the monostable hybrid energy harvester may also enjoy improved reliability and robustness.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3