Design and control of a new electrostrictive polymer based continuum actuator for endoscopic robot

Author:

Jacquemin Q1ORCID,Sun Q2,Thuau D2,Monteiro E1,Tence-Girault S13ORCID,Doizi S4,Traxer O4,Mechbal N1

Affiliation:

1. Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM Universite, Paris, France

2. Laboratoire de l’Integration du Materiau au Systeme (IMS, UMR 5218), Talence, Cedex, France

3. Arkema, CERDATO, Serquigny, France

4. Hôpital Universitaire de Tenon, Paris, France

Abstract

Minimally Invasive Surgery (MIS) consists of the insertion of a flexible endoscope into the patient body through natural orifices. Over the past few decades, the growing interest in microelectromechanical systems (MEMS) has paved the way for ubiquitous miniaturized integrated sensors and actuators in medical endoscopy. Nowadays, recent advances in materials have opened a promising way to fulfill the surgical requirements and size constraint for the development of smart continuum structures. Among smart materials, electroactive polymers (EAPs) exhibit exceptionally large, fast, repeatable, and reversible motions while perfectly meeting the requirements of micro-integration. However the high applied voltage required for the actuation is not compatible with in vivo medical application. To overcome these issues, a multilayered concept has been proposed. In this work a relaxor ferroelectric electrostrictive polymer is studied for its large electromechanical strain. A wide range of parameters involved in the active material has led us to the development of a finite element model on Abaqus to guide the experimental development. Then, to control this smart endoscopic robot a kinematic and a dynamic models have been built. To test and validate these models a Co-simulation procedure has been developed. This procedure coupled Abaqus and Matlab-Simulink allowing testing proposed control algorithms.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference27 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3