System Identification of Smart Structures Using Neural Networks

Author:

Yang S. M.,Lee G. S.1

Affiliation:

1. Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, ROC

Abstract

A composite smart structure embedded with piezoelectric sensor/actuator is fabricated and its piezoelectric effectiveness is validated by static test and modal testing. Instead of identifying the structural parameters of the smart structure, system identification is conducted by estimating the connective weights of a backpropagation neural network with an adaptive learning rate. Experimental verification shows that the [6-7-2] neural network, a neural network with 6 input neurons, 7 hidden layer neurons, and 2 output neurons, is capable of representing the system dynamics both in time domain and in frequency domain. In addition, it is fault tolerant. All simulations are validated by experiments. Integration of smart structure and neural network not only avoids the complexity introduced by other traditional analytical or computational methods but also lays the corner stone for effective neural controller design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3