Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator

Author:

Bibo Amin1,Gang Li 1,Daqaq Mohammed F.2

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA

2. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA,

Abstract

Combining theories in continuous-systems vibrations, piezoelectricity, and fluid dynamics, we develop and experimentally validate an analytical electromechanical model to predict the response behavior of a self-excited micro-power generator. Similar to music-playing harmonica that create tones via oscillations of reeds when subjected to air blow, the proposed device uses flow-induced self-excited oscillations of a piezoelectric beam embedded within a cavity to generate electric power. To obtain the desired model, we adopt the nonlinear Euler-Bernoulli beam’s theory and linear constitutive relationships. We use Hamilton’s principle in conjunction with electric circuits theory and the inextensibility condition to derive the partial differential equation that captures the transversal dynamics of the beam and the ordinary differential equation governing the dynamics of the harvesting circuit. Using the steady Bernoulli equation and the continuity equation, we further relate the exciting pressure at the surface of the beam to the beam’s deflection, and the inflow rate of air. Subsequently, we employ a Galerkin’s descritization to reduce the order of the model and show that a single-mode reduced-order model of the infinite-dimensional system is sufficient to predict the response behavior. Using the method of multiple scales, we develop an approximate analytical solution of the resulting reduced-order model near the stability boundary and study the normal form of the resulting bifurcation. We observe that a Hopf bifurcation of the supercritical nature is responsible for the onset of limit-cycle oscillations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3