Fibrillar Network Adaptive Structure with Ion-transport Actuation

Author:

Philen M.K.1,Shan Y.1,Prakash P.1,Wang K.W.2,Rahn C.D.1,Zydney A.L.1,Bakis C.E.1

Affiliation:

1. The Pennsylvania State University, University Park, PA 16802, USA

2. The Pennsylvania State University, University Park, PA 16802, USA,

Abstract

The overall objective of this research is to create a new actuation system, emulating the ability of plants to generate large strains while carrying significant structural loads. Specifically, the authors aim to create high-authority active structures by exploring a revolutionary combination of two innovative ideas inspired by the mechanical, chemical, and electrical properties of the plants. The first idea, inspired by the fibrillar network in plant cell walls, is to create a high-mechanical-advantage actuator structure based on flexible matrix composites (FMCs). Through fiber—matrix tailoring of FMC tubes, one can cause the structure to actuate in certain desired directions when pressurized. Second, the actuator concept is combined with a novel electroosmotic (EO) transport mechanism to regulate pressure inside the FMC tube, inspired by the ion-transport and volume-control phenomena in plant cells. By adjusting the applied voltage across a charged porous membrane, one can control the internal pressure and actuator response. The performance of the system (pressure, response time, stroke, load, etc.) can be tuned by proper selection of the membrane (e.g., pore size, surface charge, membrane pore area, etc.) and FMC (materials, fiber angle, etc.) properties. The new system can use natural seawater (ideal for naval applications) or a small amount of onboard solution with appropriate properties for electroosmotic pumping. This approach has several advantages over traditional actuators, such as large stroke/force, design flexibility/scalability, and electrical activation with quiet operation and no moving parts. In this research, the FMC structure and EO pump (EOP) models are developed and validated, and the integrated model is analyzed to provide guidelines for designing the overall actuation system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3