An Adaptive Fuzzy Control Algorithm for Model-Independent Active Vibration Damping of Flexible Beam-Like Structures

Author:

Cohen Kelly,Weller Tanchum,Levitas Joseph,Abramovich Haim1

Affiliation:

1. Technion-Israel Institute of Technology, Aerospace Engineering, Technion City, Haifa 32000, Israel

Abstract

The present study deals with an AFCA (Adaptive Fuzzy Control Algorithm) for an Euler-Bemoulli approximation of a two-dimensional version of a cantilever beam-like orthogonal tetrahedral space truss. Transient disturbances, modeled as a unit impulse, excite all the modes of the beam. The resulting transverse displacement at the free end of the beam and its corresponding rate are observed by sensors placed there, and active control of the beam is provided by a collocated force actuator. A design methodology, based on fuzzy logic which assumes no a priori knowledge of plant dynamics, for the closed-loop control algorithm results in relatively quick settling times, low overshoots and dying out of vibration within a few seconds. The control algorithm is enhanced and made much faster by eliminating the need of repeatedly solving the set of differential equations of motion of an emulated dynamic vibration absorber. When the control force is turned off after a mere 15 seconds, almost all the vibrational energy is dissipated as the beam returns to its undisturbed state throughout its length. In addition, the performance of the AFCA is insensitive to varying initial conditions. To examine the robustness of the control system to changes in the temporal dynamics of the cantilever beam, the transient disturbance response to a considerably perturbed plant is simulated. The Young's modulus of the beam was raised as well as lowered by 60%, substantially perturbing the natural frequencies of vibration compared to the nominal plant. The AFCA provided similar settling times and rates of vibrational energy dissipation, satisfying the aim of plant model independence.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3