From modeling to implementation of a method for restraining back relaxation in ionic polymer–metal composite soft actuators

Author:

Annabestani Mohsen1,Naghavi Nadia1ORCID,Maymandi-Nejad Mohammad1

Affiliation:

1. Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Ionic polymer–metal composites are an emerging kind of electroactive polymer actuators, which can bend in response to a relatively low driving voltage. However, to enhance the actuation performance of ionic polymer–metal composites, some of their drawbacks should be considered. One of the most important drawbacks is “back relaxation.” The so-called back relaxation effect means, when a step input voltage is applied to the ionic polymer–metal composite, the conventional bending displacement toward the anode is followed by an unwanted and slow back relaxation toward the cathode. Control-based methods for restraining the ionic polymer–metal composite back relaxation effect are feedback-based schemes which apply significant constraints to dominant applications of ionic polymer–metal composite actuators especially in biomedical applications. In this article, we present an entirely scientific-based mathematical modeling to achieve a practical method for restraining the back relaxation effect in Nafion-based ionic polymer–metal composites, relying on creating a specific pattern on Pt layers of the ionic polymer–metal composites and applying a local Gaussian disturbance to this patterned ionic polymer–metal composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3