Affiliation:
1. Departments of Systems Engineering and Materials Science and Engineering, Saarland University, Saarbrücken, Germany
2. Center for Mechatronics and Automation Technology (ZeMA) GmbH, Saarbrücken, Germany
Abstract
Dielectric elastomers represent a relatively new technology with high potentials for actuators’ applications. Thanks to their lightweight, fast operations, energy efficiency, low power consumption, large deformations, and high scalability, dielectric elastomers permit to develop novel mechatronic systems capable of overperforming standard actuation technologies, such as solenoid valves, in several applications. This article presents a novel design for a dielectric elastomer–driven actuator system which enables closing and opening of a contactor. The design is based on a combination between circular out-of-plane dielectric elastomer membranes and a bi-stable biasing system which allows to increase the out-of-plane stroke. Characterization of the contactor is initially performed in order to establish the actuator requirements in terms of force and stroke. Then, systematic design and manufacturing are carried out for both dielectric elastomer membranes and biasing mechanism. Finally, the effectiveness of the actuator in closing and opening the contactor is validated experimentally. The results show comparable dynamic performance to a conventional electromagnetic drive, with the additional advantage of a significantly lower energy consumption.
Subject
Mechanical Engineering,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献