Modeling and experimental implementation of a flexible SMA wire-based gripper for confined space operation

Author:

Zhou Haiqin1,Ma Nan2ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Department of Engineering, Lancaster University, Lancaster, UK

Abstract

The shape memory alloy (SMA) is increasingly utilized among many industrial and civil applications as it is small in size but mighty in output. However, most of the current SMA-based mechanisms face with the low controllability or bulk dimension. In this paper, a novel flexible SMA wire-based gripper is developed to address these challenges for improving the clamping stability and stroke for confined operation. To achieve this, the long SMA wire was spaced smartly within a miniature space to increase the output, further, to improve the stroke of the gripper (14 mm vs conventional 2 mm). Then, the theoretical model of the system was established by considering the thermal effect of SMA material and the static performance of the flexible beams. After that, the experimental setups were prototyped to crossly test the performances of the proposed SMA gripper. It can be seen from the experimental results that the model presented in this paper can be validated with high accuracy (error: 3.4%). It can also be found that the SMA gripper can realize the high tracking performances (i.e. 8.9% accuracy in displacement step response, 10.8% in displacement tracking response, and 12.1% accuracy in clamping force tracking response, respectively) for the industrial applications.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3