An E-shape broadband piezoelectric energy harvester induced by magnets

Author:

Lu Qingqing12,Scarpa Fabrizio3ORCID,Liu Liwu1,Leng Jinsong2,Liu Yanju1ORCID

Affiliation:

1. Department of Aerospace Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, P.R. China

2. Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, P.R. China

3. Bristol Composites Institute (ACCIS), University of Bristol, Bristol, UK

Abstract

We describe in this work a broadband magnetic E-shape piezoelectric energy harvester with wide frequency bandwidth. We develop first a nonlinear electromechanical model of the harvester based on the Hamilton variation principle that simulates the effect of the nonlinear magnetic restoring force at different spacing distances. The model is used to identify the distances existing between two different magnets that enable the system to perform with a specific nonlinearity. The performance of the E-shape piezoelectric energy harvester is also investigated through experiments, with E-shape energy harvesters at different spacing distances tested under several base acceleration excitations. We observe that the frequency domain output voltage of the system shows a general excellent controllable performance, with a widening of the frequency bandwidth. The half-power bandwidth of the linear energy harvester for a distance of 25 mm is 0.8 Hz only, which can be expanded to 2.67 Hz for the larger distance of 11 mm between magnets. The energy harvester presented in this work shows promising performances for broad-spectrum vibration excitations compared to conventional cantilever piezoelectric energy harvester systems with a tip mass.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3