Semiactive Controllers for Magnetorheological Fluid Dampers

Author:

Wang D. H.1,Liao W. H.1

Affiliation:

1. Smart Materials and Structures Laboratory, Department of Automation and Computer-Aided Engineering The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Abstract

It is challenging to control the damping forces of magnetorheological (MR) fluid dampers because of the strong nonlinearity between the damping force of an MR fluid damper and the velocity across the damper, and the semiactive relationship between the damping force and the applied voltage/current. Hence, the desired damping force ought to be generated by an MR fluid damper cannot be commanded directly, only the command voltage applied to the current driver for the MR damper can be directly controlled. In this article, the configuration of a semiactive control system with MR fluid dampers is discussed and a damper controller based on signum function for MR fluid dampers is proposed. The damper controller is used to generate and adjust the command voltage to track the desired damping force determined by the system controller based on the desired and the actual damping forces. Two key factors for controlling the damping force of an MR fluid damper through a damper controller are considered in this article: (1) tracking ability of the controlled damping force to the desired damping force, and (2) energy requirement for the MR fluid damper. The characteristics of the controlled damping force and its corresponding command voltage are analyzed and compared with the Heaviside function damper controller. The simulation results show that the signum function controller outperforms the Heaviside function controller for better damping tracking ability while requiring less energy for the MR damper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comfort Enhancement for Tractor Drivers in Agricultural Field using Semi Active Seat Suspension;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

2. Magnetorheological fluid in prostheses: A state-of-the-art review;Journal of Intelligent Material Systems and Structures;2024-02-06

3. PERFORMANCE EVALUATION OF A SMALL-SCALE MAGNETORHEOLOGICAL DAMPER FOR CIVIL ENGINEERING APPLICATIONS;Advances in Civil and Architectural Engineering;2023-06-10

4. Road preview MPC of semi‐active suspension with magneto‐rheological damper;International Journal of Robust and Nonlinear Control;2023-02-07

5. Modeling, Simulation and Optimization of Agricultural Tillage Process Vibrations using an Interactive Active Control System;E3S Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3