Monte Carlo Matching Pursuit Decomposition Method for Damage Quantification in Composite Structures

Author:

Das S.1,Kyriakides I.2,Chattopadhyay A.3,Papandreou-Suppappola A.4

Affiliation:

1. NASA Ames Research Center, M.S. 269-1, Moffett Field, CA, 94035, USA,

2. Department of Electrical Engineering, Arizona State University, Tempe, Arizona, 85287, USA

3. Department of Mechanical and Aerospace Engineering and Adaptive Intelligent Materials and Systems (AIMS) Center, Arizona State University, Tempe, Arizona, 85287, USA

4. Department of Electrical Engineering and Adaptive Intelligent Materials and Systems (AIMS) Center, Arizona State University, Tempe, Arizona, 85287, USA

Abstract

In wave-based approach, the presence of damage is visualized in terms of the changes in the signature of the resultant wave that propagates through the structure. In structural health monitoring, the fundamental goal is to detect, localize, and quantify these damage signatures. The current approach uses matching pursuit decomposition (MPD) to compare signals from healthy and damaged structures. However, the major drawback of the MPD is that, in the decomposition process, it performs an exhaustive search over a large dictionary of elementary functions. Therefore, this method of decomposition is associated with a large computational expense. In this research, the Monte Carlo matching pursuit decomposition (MCMPD) is proposed, that adapts a smaller dictionary to the signal structure, thus avoiding the exhaustive search over the time-frequency plane. The proposed algorithm, sequentially estimates a dictionary that contains only those components that match the waveform structure, uses the matching pursuits for the decomposition of the signal and if necessary, adapts the dictionary to the structure of the residues for further decomposition. Finally, we demonstrate using real life data that the MCMPD retains the ability of the matching pursuit to decompose waveforms and quantify them accurately while reducing computational expense.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3