Affiliation:
1. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China
Abstract
This article presents the design and multi-physics coupling analysis of a shear-valve-mode magnetorheological fluid damper with different piston configurations. The finite element model is built to study the effects of the shape of the piston slot and magnetism-insulators at both ends of the piston yoke on the performance of the magnetorheological damper. Particle swarm optimization and finite element simulation are combined to optimize the structural parameters of the magnetorheological damper. The influences of different piston configurations on the magnetic flux density in the working gap, the shear stress, the viscous stress, and the dynamic range are investigated. The simulation results reveal that the magnetorheological damper, in which the corners of the piston slot are chamfered and the edges of the magnetism-insulators are filleted, exhibits a better damping performance. Furthermore, magnetorheological dampers with and without magnetism-insulators are fabricated. The influences of control current, displacement, and velocity on the mechanical performance of the magnetorheological dampers are experimentally investigated, and the experiment results are in accordance with the theoretical derivation and finite element simulation results.
Funder
Equipment Pre-research Project of 2017
comisión sectorial de investigación científica
china postdoctoral science foundation
Natural Science Foundation of Beijing Municipality
Beijing Postdoctoral Research Foundation
National Natural Science Foundation of China
beijing municipal science and technology commission
Subject
Mechanical Engineering,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献