Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering

Author:

Lagoudas Dimitris C.1,Vandygriff Eric L.1

Affiliation:

1. Aerospace Engineering Department, Center for Mechanics and Composites, Texas A&M University, College Station, TX 77843-3141, USA

Abstract

Currently, three methods are commonly used for producing porous NiTi shape memory alloys (SMAs) from elemental powders. These include conventional sintering, Self-propagating High temperature Synthesis (SHS), and sintering at elevated pressure via a Hot Isostatic Press (HIP). Conventional sintering requires long heating times and samples are limited in shape and pore size. SHS is initiated by a thermal explosion ignited at one end of the specimen, which then propagates through the specimen in a self-sustaining manner. One of the difficulties with SHS is the inability to control intermetallic phases. This work will focus on the fabrication and characterization of porous NiTi SMA material produced from elemental powders via HIPping. Porous NiTi SMA was produced from elemental Ni and Ti powders at elevated temperature and pressure using a HIP. Small and large pore specimens containing average pore sizes ranging from 20 μm up to 1 mm have been produced by slightly varying the HIPping sintering temperatures and times. Quasi-static and dynamic loading experiments are conducted on various samples produced using the presented methodology and their shape recovery and energy absorption characteristics are measured during the forward and reverse phase transformation and detwinning. Their phase transformation characteristics were found using calorimetric measurements and their composition has been studied using optical and electron microscopy and microprobe X-ray analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3