Two degree of freedom vibration based electromagnetic energy harvester for bridge health monitoring system

Author:

Masood Ahmad Muhammad1,Ullah Khan Farid1ORCID

Affiliation:

1. Department of Mechatronics, University of Engineering and Technology Peshawar, Peshawar, KP, Pakistan

Abstract

This paper presents an electromagnetic energy harvester to extract low frequency and low acceleration vibration energy available in a bridge environment. The developed harvester is a multi-mode oscillator with dual electromagnetic transduction mechanisms. The harvester consists of two cantilever beams. The first cantilever beam is split into two equal pieces along its length and the second beam placed in between them coming back to the fixed end and attached at outer end to the first beam. This way instead of a long conventional cantilever beam a compact harvester is fabricated. Two magnets as proof masses are attached to each free end of the beam making it a two degree of freedom system (2-DOF). The magnets are positioned to oscillate inside hand wound coils during operation. An analytical model was developed and COMSOL multiphysics was used to simulate the mode shapes of the harvester. The mathematical model was simulated for open circuit voltage in MATLAB and showed closely matching results with the experimental values. The harvester is characterized in lab for its performance under sinusoidal vibrations at low frequency (3 Hz–15 Hz) and low acceleration (0.01–0.09 g) levels. The 2-DOF harvester has two resonant frequencies of 4.4 Hz and 5.5 Hz and a volume of 333 cm3. It produces maximum voltage of 0.6 V at first resonance on coil-1 and maximum voltage of 1.2 V on coil-2 at second resonance at 0.09 g. At acceleration of 0.09 g the harvester produced 2.51 mW at first resonant frequency and 10.7 mW at second resonance. Moreover, the AC output voltage of the harvester is rectified to DC voltage by a three-stage Cockcroft-Walton multiplier type circuit. The DC power output at 0.05 g was 0.939 mW at first resonance and 0.956 mW at second resonance while maximum voltages of 5.4 V on coil-1 and 4 V on coil-2 were produced.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3