Energy harvester for vehicle tires: Nonlinear dynamics and experimental outcomes

Author:

Tornincasa Stefano1,Repetto Maurizio2,Bonisoli Elvio1,Di Monaco Francesco1

Affiliation:

1. Department of Production Systems and Business Economics, Politecnico di Torino, Italy

2. Department of Electrical Engineering, Politecnico di Torino, Italy

Abstract

This article presents a very compact electromechanical wideband energy harvester optimized for tire applications. The device exploits an asymmetric magnetic spring to be adaptive and effective at almost any vehicle speed. The device has been simulated through an experimentally validated SIMULINK block-oriented model. The simulation takes into account nonlinear dynamic and adaptive resonant behavior of the seismic mass, electromagnetic, and magnetostatic coupling between floating magnetic mass and coils, and the transfer of the generated power to an external load by means of a nonlinear circuit interface. A particular focus on the pneumatic effect on the floating magnet has been made. A convenient choice of clearance between moving and fixed parts can be used to create an effective air brake preventing or softening shocks with end stops and to modify system dynamic. A nonlinear equivalent spring dashpot model of the pneumatic effect and a method to estimate its parameters from geometry have been proposed. An analysis of different nonlinearities of the system at different vehicle speed and a study on the combined effect of softening and hardening behavior of the device have been performed and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A two-degree-of-freedom nonlinear electromagnetic energy harvester in rotational motion;Mechanical Systems and Signal Processing;2024-11

2. Niceclick: A New Frontier for Haptic Technologies;Special Topics in Structural Dynamics & Experimental Techniques, Volume 5;2023-10-01

3. Ungraded tyre performance analysis for Indian road conditions;Materials Today: Proceedings;2023

4. The Application of PVDF-Based Piezoelectric Patches in Energy Harvesting from Tire Deformation;Sensors;2022-12-19

5. Vibration energy harvesting via piezoelectric bimorph plates: An analytical model;Mechanics of Advanced Materials and Structures;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3