Influence of Excitation Signal on Impedance-based Structural Health Monitoring

Author:

Baptista Fabricio Guimarães1,Filho Jozué Vieira2,Inman Daniel J.3

Affiliation:

1. Capes Foundation, Ministry of Education of Brazil, Caixa Postal 250, Brasília - DF 70040-020, Brazil,

2. Department of Electrical Engineering, UNESP - Sao Paulo State University, Ilha Solteira, SP, Brazil

3. Center for Intelligent Material Systems and Structures, Virginia Tech, MC-0261 Blacksburg, VA 24061, USA

Abstract

The electromechanical impedance (EMI) technique has been successfully used in structural health monitoring (SHM) systems on a wide variety of structures. The basic concept of this technique is to monitor the structural integrity by exciting and sensing a piezoelectric transducer, usually a lead zirconate titanate (PZT) wafer bonded to the structure to be monitored and excited in a suitable frequency range. Owing to the piezoelectric effect, there is a relationship between the mechanical impedance of the host structure, which is directly related to its integrity, and the electrical impedance of the PZT transducer, which is obtained through the ratio between the excitation and sensing signals. This work investigates the influence of the type of excitation signal and voltage level on impedance-based monitoring systems. To illustrate our conjecture, tests have been carried out on an aluminum specimen with different health conditions and the results show conclusively that the excitation signal has influence on system performance and power dissipation in the PZT transducer.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3