Effects of temperature on performance of compressible magnetorheological fluid suspension systems

Author:

McKee Michael1,Gordaninejad Faramarz1,Wang Xiaojie1

Affiliation:

1. Composite and Intelligent Materials Laboratory, Department of Mechanical Engineering, The University of Nevada, Reno, Reno, NV, USA

Abstract

The temperature effect on performance of compressible magnetorheological fluid suspension systems is studied. Magnetorheological fluid is a temperature-dependent material where its compressibility and rheological properties change with temperature. Experimental studies were conducted to explore the temperature effects on the properties of the magnetorheological fluid and the compressible magnetorheological fluid suspension systems. The temperature effect on magnetorheological fluid properties included the bulk modulus, shear yield stress, and viscosity. It was found that the shear yield stress of the magnetorheological fluid remains unchanged within the testing range while both the plastic viscosity, using the Bingham plastic model, and the bulk modulus of the magnetorheological fluid decrease as the temperature of the fluid increases. A theoretical model that incorporates the temperature-dependent properties of magnetorheological fluid was developed to predict behavior of a compressible magnetorheological fluid suspension system. An experimental study was conducted using an annular flow compressible magnetorheological fluid suspension system with varying temperatures, motion frequencies, and magnetic fields. The experimental results are used to verify the theoretical model. Moreover, the stiffness and energy dissipation of the compressible magnetorheological fluid suspension system were obtained, experimentally. The effects of the temperature on performance characteristics of the compressible magnetorheological fluid suspension system were analyzed. It was found that both the stiffness and the energy dissipation decrease with an increase in the temperature of magnetorheological fluid.

Funder

Tank Automotive Research, Development and Engineering Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3