Active Vibration Suppression of Sandwich Beams using Piezoelectric Shear Actuators: Experiments and Numerical Simulations

Author:

Baillargeon Brian P.1,Vel Senthil S.2

Affiliation:

1. Department of Mechanical Engineering, University of Maine, Orono, Maine 04469, USA

2. Department of Mechanical Engineering, University of Maine, Orono, Maine 04469, USA,

Abstract

This article deals with the experimental and numerical assessment of the vibration suppression of smart structures using piezoelectric shear actuators. Experimental results are presented for an adaptive sandwich cantilever beam that consists of aluminum facings and a core composed of two piezoelectric shear actuators and foam. The electric field is applied perpendicular to the poling direction of the piezoelectric actuators to cause transverse shear deformation of the sandwich beam. Active vibration suppression is achieved using either positive position feedback or strain rate feedback. The control system is implemented in real-time using Matlab/Simulink and a dSPACE digital controller. First, the frequency response of the adaptive beam is investigated by using one shear actuator to excite the beam and the other to control its vibration. Parametric studies are conducted to assess the influence of controller parameters on the frequency response of the system. The experimental frequency response function compares well with numerical simulations using the finite element method. Next, the effectiveness of the active vibration suppression system in the time domain is analyzed using a proof-mass actuator that is attached to the tip of the cantilever beam to provide a repeatable vibration input. Experiments and numerical simulations show that the shear actuators can provide significant reduction in tip acceleration and settling time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3