Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

Author:

Li Ao1ORCID,Hu Yu1ORCID,Cui Xin-Wu2,Ye Xin-Hua1,Peng Xiao-Jing1,Lv Wen-Zhi3,Zhao Chong-Ke4ORCID

Affiliation:

1. Department of Medical Ultrasound, First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China

2. Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China

3. Department of Artificial Intelligence, Julei Technology, Wuhan, PR China

4. Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, PR China

Abstract

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.

Funder

Institute of Ultrasound in Medicine and Engineering, Fudan University, Talent Project

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3