Urodynamic 4D-CT evaluation: 320-row area detector CT scanner combined with PhyZiodynamics software analysis provides an innovative system to evaluate urinary flow and outlet obstructions

Author:

Mori Shintaro1ORCID,Yashiro Hideki2,Inoue Masanori3,Takahara Kiyoshi4,Kusaka Mamoru4,Shiroki Ryoichi4

Affiliation:

1. Department of Urology, Hiratsuka City Hospital, Kanagawa, Japan

2. Department of Diagnostic Radiology, Hiratsuka City Hospital, Kanagawa, Japan

3. Department of Diagnostic Radiology, Keio University, Tokyo, Japan

4. Department of Urology, Fujita Health University, Aichi, Japan

Abstract

Background Evaluation of the morphology of the lower urinary tract as well as the movements associated with urination are required for the symptomatic diagnosis of lower urinary tract obstruction as well as the assessment of postoperative adaptation. However, no tool currently exists for direct and easy patient evaluation. Purpose To evaluate lower urinary tract obstruction and postoperative adaptation using a four-dimensional (4D) virtual reality urination image (urodynamic 4D-CT image). Material and Methods We used a 320-row area detector CT scanner and PhyZiodynamics image analysis software to perform 197 urodynamic 4D-CT examinations on 175 first-time patients between January 2014 and March 2017. Results A comparison of the obtained images before and after holmium laser enucleation of the prostate revealed the morphological changes due to prostate enucleation and enabled visualization of the ideal urination conditions, showing that the anatomical structural changes during urination and the opening of the urethra play a major role in improving voiding function. Conclusion Using low-dosage radiation, the sharply defined moving image obtained via urodynamic 4D-CT examination can be utilized as a physiological diagnostic tool to evaluate a series of urinary movements from any angle between the prostate, urethra, and bladder in a unitary manner with the time axis added. There was negligible patient impact. This technique could provide new opportunities for the diagnosis of lower urinary tract symptoms and post-surgical adaptation assessment.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3